Der Markt für biogene und synthetische Alternativen für Leder wächst und zielt darauf, Materialien auf tierischer Basis durch vegane Alternativen zu ersetzen. Außerdem sollen dazu biobasierte Rohmaterialien anstelle von fossil basierten, synthetischen Rohstoffen verwendet werden. In dieser Studie wurden ein Schuhoberleder und ein Kunstleder, sowie neun alternative Materialien (Desserto®, Kombucha, Pinatex®, Noani®, Appleskin®, Vegea®, SnapPap®, Teak Leaf® und Muskin®) untersucht. Unser Ziel war der Vergleich von Struktur und technischer
Leistungsfähigkeit der Materialien, was eine Abschätzung der Einsatzgebiete ermöglicht. Struktur und Zusammensetzung wurden durch Mikroskopie, FTIR Spektroskopie und Thermodesorptionsanaalyse analysiert, die Oberflächeneigenschaften, das mechanische Verhalten, die Wasserdampfdurchlässigkeit und die
Wasserdampfaufnahme durch standardisierte physikalische Tests. Im Ergebnis zeigte keine der Lederalternativen die universelle Leistungsfähigkeit von Leder.
Die komplette Veröffentlichung in deutscher Sprache finden Sie in PRO-LEDER 2. Die englische Originalfassung ist unter dem folgenden Link zu finden: https://doi.org/10.3390/coatings11020226
Hier noch das Quellenverzeichnis zur Veröffentlichung in PRO-LEDER 2:
1.Braungart, M.; McDonough,W.; Bollinger, A. Cradle-to-cradle design: Creating healthy emissions—a strategy for eco-effective product and system design. J. Clean. Prod. 2007, 15, 1337–1348.
- McDonough, W.; Braungart, M.; Anastas, P.T.; Zimmerman, J.B. Applying the principles of green engineering to cradle-to-cradle design. Environ. Sci. Technol. 2003, 37, 434A–441A.
- Peters, S. Sustainable Multipurpose Materials for Design. In Materials Experience: Fundamentals of Materials and Design; Karana, E., Pedgley, O., Rognoli, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 169–179. ISBN 978-0-08-099359-1.
- Peters, S. Materialrevolution II: Neue Nachhaltige Und Multifunktionale Materialien Für Design Und Architektur;Walter de Gruyter: Berlin, Germany, 2014; ISBN 3-03821-000-5.
- Goh, W.; Rosma, A.; Kaur, B.; Fazilah, A.; Karim, A.; Bhat, R. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 2012, 19, 153–158.
- Tuttle, F.J. The story of coated fabrics: I-development of oilcloth. Text. Res. 1944, 14, 228–232.
- Tuttle, F.J. The story of coated fabrics: II-rubber and pyroxylin coatings. Text. Res. 1944, 14, 260–269.
- Peintner, U.; Pöder, R.; Pümpel, T. The iceman’s fungi. Mycol. Res. 1998, 102, 1153–1162.
- Papp, N.; Rudolf, K.; Bencsik, T.; Czégényi, D. Ethnomycological use of Fomes Fomentarius (L.) Fr. and Piptoporus Betulinus (Bull.) P. Karst. in Transylvania, Romania. Genet. Resour. Crop Evol. 2017, 64, 101–111.
- Domskiene, J.; Sederaviciute, F.; Simonaityte, J. Kombucha bacterial cellulose for sustainable fashion. IJCST 2019, 31, 644–652.
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292.
- Cerimi, K.; Akkaya, K.C.; Pohl, C.; Schmidt, B.; Neubauer, P. Fungi as source for new bio-based materials: A patent review. Fungal Biol. Biotechnol. 2019, 6, 17.
- Available online: https://www.ananas-anam.com (accessed on 30 December 2020).
- ISO 20942:2019 Leather—Full Chrome Upper Leather—Specification and Test Methods; ISO: Geneva, Switzerland, 2019.
- ISO 14930:2012 Leather—Leather for Dress Gloves—Specification; ISO: Geneva, Switzerland, 2012.
- ISO 14931:2015-06 Leather-Guide to the Selection of Leather for Apparel (Excluding Furs); ISO: Geneva, Switzerland, 2015.
- ISO 3376:2020 Leather-Physical and Mechanical Tests-Determination of Tensile Strength and Percentage Elongation; ISO: Geneva, Switzerland, 2020. Coatings 2021, 11, 226 14 of 14
- ISO 3377-1:2011 Leather-Physical and Mechanical Tests-Determination of Tear Load—Part 1: Single Edge Tear; ISO: Geneva, Switzerland, 2011.
- ISO 17186:2011 Leather–Physical and Mechanical Tests–Determination of Surface Coating Thickness; ISO: Geneva, Switzerland, 2011.
- ISO 32100:2018 Rubber-or Plastics-Coated Fabrics-Physical and Mechanical Tests—Determination of Flex Resistance by the Flexometer Method; ISO: Geneva, Switzerland, 2018.
- ISO 17229:2016 Leather–Physical and Mechanical Tests–Determination of Water Vapour Absorption; ISO: Geneva, Switzerland, 2016.
- ISO 14268:2012 Leather–Physical and Mechanical Tests–Determination of Water Vapour Permeability; ISO: Geneva, Switzerland, 2012.
- VDA 278 Thermal Desorption Analysis of Organic Emissions for the Characterization of Non Metallic Materials for Automobiles; VDA: Berlin, Germany, 2011.
- Jones, M.; Bhat, T.; Kandare, E.; Thomas, A.; Joseph, P.; Dekiwadia, C.; Yuen, R.; John, S.; Ma, J.; Wang, C.-H. Thermal degradation and fire properties of fungal mycelium and mycelium—Biomass composite materials. Sci. Rep. 2018, 8, 17583.
- Jones, M.; Gandia, A.; John, S.; Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 2021, 4, 9–16.
- Bustillos, J.; Loganathan, A.; Agrawal, R.; Gonzalez, B.A.; Perez, M.G.; Ramaswamy, S.; Boesl, B.; Agarwal, A. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. ACS Appl. Bio Mater. 2020, 3, 3145–3156.
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and mechanics of fungal mycelium. Sci. Rep. 2017, 7, 13070.
- Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online 2019, 18, 1–74.
- Wegst, U.G.K.; Ashby, M.F. The mechanical efficiency of natural materials. Philos. Mag. 2004, 84, 2167–2186.
- Sureshkumar, P.S.; Thanikaivelan, P.; Phebe, K.; Krishnaraj, K.; Jagadeeswaran, R.; Chandrasekaran, B. Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: An approach toward making amalgamated leather products. J. Nat. Fibers 2012, 9, 37–50.
- Jose, S.; Salim, R.; Ammayappan, L. An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J. Nat. Fibers 2016, 13, 362–373.
- Kannojiya, R.; Gaurav, K.; Ranjan, R.; Tiyer, N.; Pandey, K. Extraction of pineapple fibres for making commercial products. J. Environ. Res. Dev. 2013, 7, 1385.
- Gil, L. Cork composites: A review. Materials 2009, 2, 776–789.
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365.
- Gil, L. Cork: Sustainability and new applications. Front. Mater. 2015, 1, 38.
- Lomax, G.R. The Design ofWaterproof,Water Vapour-Permeable Fabrics. J. Coat. Fabr. 1985, 15, 40–66.
- Satsumoto, Y.; Piao, S. Effects of shoe fit and moisture permeability of a leather shoe on shoe microclimate and air exchange. J. Ergon. 2016, 6, 1–7.
- Gulbiniene, A.; Jankauskaite, V.; Kondratas, A. Investigation of the water vapour transfer properties of textile laminates for footwear linings. Fibres Text. East. Eur. 2011, 19, 86